UNIVERSITYOF YTTA CEINI NUL- SPTS **NOTRE DAME**

Introduction

Background

Detailed resolution of flow pathways and barriers is critical for storm surge modeling, however, resolution often comes with significant computational costs for numerical models, posing challenges within restricted forecast runtime windows.

Maximum Surface Elevation for Hurricane Florence 2018 at Onslow Bay, NC (a) Coarse grid (~4.3 km) (b) Fine grid simulation (~0.5 km)

Subgrid Correction^[1]

Subgrid approaches offer a means to integrate high-resolution information into coarse-grid simulations using a variety of closures

Wetting and drying methods (a) Standard method (c) Subgrid method

Coastal and Estuarine Storm Tide (CEST)^[2]

The CEST surge model based on shallow water equations formulated over orthogonal curvilinear coordinates

Example case for Ike (a) Hurricane setup (b) Simulation result for maximum surface elevation

Governing equations^[1]

Upscaled form of 2D non-conservative shallow water equations in orthogonal curvilinear coordinates become

Mass equation
$$\frac{\partial H}{\partial t} + \frac{1}{h_1 h_2} \left[\frac{\partial (Hh_2 u)}{\partial q_1} + \frac{\partial (Hh_1 v)}{\partial q_2} \right] = 0$$
Momentum equations
$$\frac{\partial u}{\partial t} + \frac{1}{Hh_1 h_2} \left(\frac{\partial Hh_2 uu}{\partial q_1} + \frac{\partial Hh_1 uv}{\partial q_2} - u \frac{\partial Hh_2 u}{\partial q_1} - u \frac{\partial Hh_1 v}{\partial q_2} \right) = \frac{1}{h_1 h_2} \left(v^2 \frac{\partial h_2}{\partial q_1} - uv \frac{\partial h_1}{\partial q_2} \right)$$

$$- \frac{g}{h_1} \frac{\partial}{\partial q_1} \left(\eta + \frac{\Delta P_a}{\rho} \right) + fv - \frac{\phi \tau_B^{q_1}}{H} + \frac{\phi \tau_W^{q_1}}{\rho H} + \frac{v}{h_1^2} \frac{\partial^2 u}{\partial q_1^2} + \frac{v}{h_2^2} \frac{\partial^2 u}{\partial q_2^2}$$

$$\frac{\partial v}{\partial t} + \frac{1}{Hh_1 h_2} \left(\frac{\partial Hh_2 uv}{\partial q_1} + \frac{\partial Hh_1 v^2}{\partial q_2} - h_2 v \frac{\partial Hu}{\partial q_1} - h_1 v \frac{\partial Hv}{\partial q_2} \right) = \frac{1}{h_1 h_2} \left(u^2 \frac{\partial h_1}{\partial q_2} - uv \frac{\partial h_2}{\partial q_1} \right)$$

$$- \frac{g}{h_2} \frac{\partial}{\partial q_2} \left(\eta + \frac{\Delta P_a}{\rho} \right) - fu - \frac{\phi \tau_B^{q_2}}{H} + \frac{\phi \tau_W^{q_2}}{\rho H} + \frac{v}{h_1^2} \frac{\partial^2 v}{\partial q_1^2} + \frac{v}{h_2^2} \frac{\partial^2 v}{\partial q_2^2}$$

Subgrid Correction of Storm Surge Modeling in Orthogonal Curvilinear Coordinates

Haoran Sun^{1*}, Damrongsak Wirasaet¹, Yuepeng Li², Andrew Kennedy¹, Diogo Bolster¹

¹University of Notre Dame, Civil and Environmental Engineering and Earth Sciences ²Florida International University, International Hurricane Research Center

Grid	$\frac{1}{N} \sum_{i=1}^{N} \frac{\ E(s_{q,conv};t_i)\ _{L_2}}{\ E(s_{q,sg};t_i)\ _{L_2}}$			
	$s = \eta$	s = u	s = v	
50×50	4.36	2.17	2.31	
100×100	3.52	1.81	1.82	
200×200	2.65	1.47	1.35	

Grid $(q_1 \times q_2)$		106×178	212×356	424×712	13568×22784	
	Minimum	1.698	0.849	0.419	0.00555	
$h_1 \Delta q_1 \; (km)$	Maximum	8.714	4.408	2.221	0.07826	
	Average	4.298	2.165	1.087	0.03359	
	Minimum	1.173	0.848	0.421	0.00714	
$h_2\Delta q_2 \; (km)$	Maximum	8.717	4.408	2.219	0.07783	
	Average	4.298	2.165	1.087	0.03359	

o Station

Peak water level comparison between observations and coarse grid simulations: (a) Conventional and (b) Subgrid method

Error statistics for predictions of peak water levels. Dry: the number of "Dry" stations; R^2 : Root-mean square errors; a: Best fit slope

Comparison of surface elevation time series at stations

• Error Statistics

				1200	0.025		
$\operatorname{Grid}(q_1 \times q_2)$	Simulation	Dry	$E_{RMS}(m)$	R^2_{all}	R^2_{wet}	a_{all}	a_{wet}
106×178	Conventional	15	0.6078	0.2093	0.7087	0.7957	0.9090
	Subgrid	1	0.4017	0.6277	0.6335	0.8901	0.8931
212×356	Conventional	18	0.6831	-0.0151	0.6757	0.7584	0.9084
	Subgrid	1	0.3861	0.6629	0.6691	0.9051	0.9020
424×712	Conventional	13	0.5790	0.2474	0.7095	0.8081	0.9077
	Subgrid	2	0.4192	0.6030	0.6366	0.8732	0.8826

Summary

- ✓ A subgrid correction is developed in CEST model ✓ Verification using idealized non-trivial test case with analytical solution.
- ✓ Validation using hurricane-induced storm surge processes with observation data

References

[1] Kennedy, A.B., Wirasaet, D., Begmohammadi, A., Sherman, T., Bolster, D. and Dietrich, J.C., 2019. Subgrid theory for storm surge modeling. Ocean Modelling, 144, p.101491.

[2] Li, Y., Chen, Q., Kelly, D.M. and Zhang, K., 2021. Hurricane Irma simulation at South Florida using the parallel CEST Model. Frontiers in Climate, p.79.

Acknowledgments

This research was supported by National Science Foundation, **USA grants ICER 1664040 and 1664037**

